The Intrinsic System Model of the Simple Genetic Algorithm with α-Selection, Uniform Crossover and Bitwise Mutation

نویسنده

  • ANDRÉ NEUBAUER
چکیده

Genetic algorithms (GA) are instances of random heuristic search (RHS) which mimic biological evolution and molecular genetics in simplified form. These random search algorithms can be theoretically described with the help of a deterministic dynamical system model by which the stochastic trajectory of a population can be characterized using a deterministic heuristic function and its fixed points. For practical problem sizes the determination of the fixed points is unfeasible even for the simple genetic algorithm (SGA). The recently introduced simple genetic algorithm with α-selection allows the analytical calculation of the unique fixed point of the corresponding intrinsic system model. In this paper, an overview of the theoretical results for the simple genetic algorithm with α-selection and its intrinsic system model is given. In addition to the theoretical analysis experimental results for the simple genetic algorithm with α-selection, uniform crossover and bitwise mutation are presented. Key–Words: Simple genetic algorithm, α-selection, random heuristic search, dynamical system model, infinite population model, intrinsic system model

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory of the Simple Genetic Algorithm with α-Selection, Uniform Crossover and Bitwise Mutation

Genetic algorithms (GA) are instances of random heuristic search (RHS) which mimic biological evolution and molecular genetics in simplified form. These random heuristic search algorithms can be theoretically described by an infinite population model with the help of a deterministic dynamical system model by which the stochastic trajectory of a population can be characterized using a determinis...

متن کامل

COMPUTERS and SIMULATION in MODERN SCIENCE Volume IV

Genetic algorithms are random heuristic search algorithms which mimic biological evolution and molecular genetics in simplified form. These algorithms can be theoretically described by an infinite population model with the help of a deterministic dynamical system by which the stochastic population trajectory is characterized using a deterministic heuristic function and its fixed points. For pra...

متن کامل

Design of a Hybrid Genetic Algorithm for Parallel Machines Scheduling to Minimize Job Tardiness and Machine Deteriorating Costs with Deteriorating Jobs in a Batched Delivery System

This paper studies the parallel machine scheduling problem subject to machine and job deterioration in a batched delivery system. By the machine deterioration effect, we mean that each machine deteriorates over time, at a different rate. Moreover, job processing times are increasing functions of their starting times and follow a simple linear deterioration. The objective functions are minimizin...

متن کامل

Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...

متن کامل

Genetic algorithm for Echo cancelling

In this paper, echo cancellation is done using genetic algorithm (GA). The genetic algorithm is implemented by two kinds of crossovers; heuristic and microbial. A new procedure is proposed to estimate the coefficients of adaptive filters used in echo cancellation with combination of the GA with Least-Mean-Square (LMS) method. The results are compared for various values of LMS step size and diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010